Kevin Egedy

<u>kegedy@gmail.com</u>

734-474-7568

Education	
University of Washington, Seattle	Dec 2022
MS Electrical Engineering (3.8)	
University of Michigan, Ann Arbor	Dec 2014
BS Electrical Engineering	
Skills	
Cadence Virtuoso, SpectreRF, Altium Designer, Python, HSPI	CE, C, C++, MATLAB, Simulink, PLECS, Bash, SQL
Projects	
University of Washington	09/22-12/22
Radio Frequency Integrated Circuits	
Designed 2.4GHz WiFi receiver with focus on degenerat	ed CS amplifier for wide bandwidth and low noise
 Characterized mixer transistors for VCO swing and LNA 	oad differences during component integration
 Analyzed receiver model and prioritized LNA gain stage 	to improve system noise and linearity
University of Washington	01/22-03/22
Linear Integrated Circuits	
 Designed electrode current driver with focus on gain-bo 	osted cascode for Gohm output impedance
 Determined amplifier design from limited bias voltages 	and available headroom given 2.5V supply
 Balanced telescopic amplifier to achieve unconditional sectors 	stability, sufficient gain, and minimal power
 Characterized PTAT current mirrors to match sink and so 	ource drivers with less than 0.11uA error
University of Washington	12/20-12/22
Advanced Robotics Club	
 Designed switched-mode converter to regulate power in 	n 2000J ultracapacitor bank and 24V DC motors
 Created simulations with nonidealities to improve controller dynamics and discover design gaps 	
 Led hardware team in PCB development and increased member participation and yearly projects 	
 Managed hardware requirements and reviewed signal of 	onditioning handoffs with software team
 Achieved greater agility by recruiting partners for design 	ו reviews, software licenses, and career growth
Experience	
AT&T	03/21-10/21

Software Engineer

• Minimized long term investment by moving on-premise apps into Azure and templating backend pipelines

03/17-03/21

01/15-03/17

- · Justified internal app expenses by building website to rank costs, impact, and user engagement
- · Reduced and simplified Azure infrastructure by documenting best practices and showcasing examples

AT&T

Application Developer

- · Enabled new insights into traffic patterns by displaying network metrics into customizable heat maps
- Shortened time to deploy macro sites by identifying key approval stages and spending capital efficiently
- Simplified radio parameter deployment and reduced out of compliance sites for local and global policies

AT&T

Radio Access Network Engineer

- · Minimized network degradation by scheduling software updates and base station equipment upgrades
- Decreased congested download traffic by tilting antennas and prioritizing sites needing additional spectrum
- Improved in-building installation process by communicating customer concerns with design engineers and verifying cell identifiers and channel performance with all parties