Buck Controller#

Find the small signal output voltage to duty ratio \(G_{vd}(s)\) and small signal output current to duty ratio \(G_{id}(s)\) transfer functions. General form defined as

\[\begin{align*} G_0 \dfrac{1-\dfrac{s}{w_z}}{1+\dfrac{s}{Qw_0}+ \left(\dfrac{s}{\omega_0} \right)^2} .\\ \end{align*}\]

Volt-Seconds

\[\begin{align*} \langle v_{L}(t)\rangle &= L\frac{d}{dt} \langle i(t)\rangle = \bigg[\bigg(\langle{v_g}(t)\rangle - \langle i(t)\rangle R_{on} - \langle i(t)\rangle R_L - \langle v(t)\rangle \bigg)d(t) + \bigg( - \langle i(t)\rangle R_{on} - \langle i(t)\rangle R_L - \langle v(t)\rangle \bigg)d'(t) \bigg] \\[1em] \langle v_{L}(t)\rangle &= L\frac{d}{dt} \langle i(t)\rangle = \bigg[\langle{v_g}(t)\rangle d(t) - \langle i(t)\rangle R_{on} - \langle i(t)\rangle R_L - \langle v(t)\rangle \bigg] \\[1em] V_L &= V_g D - I R_{on} - I R_L - V \\[1em] V_L &= V_g D - \dfrac{V}{R} R_{on} - \dfrac{V}{R} R_L - V \\[1em] \end{align*}\]

Charge Balance

\[\begin{align*} \langle i_C (t) \rangle &= C\frac{d}{dt} \langle v(t)\rangle = \bigg[\bigg(\langle i(t)\rangle -\frac{\langle v(t)\rangle}{R} \bigg)d(t) +\bigg(\langle i(t)\rangle -\frac{\langle v(t)\rangle}{R} \bigg)d'(t) \bigg] \\[1em] \langle i_C (t) \rangle &= C\frac{d}{dt} \langle v(t)\rangle = \bigg[\langle i(t)\rangle -\frac{\langle v(t)\rangle}{R} \bigg] \\[1em] I &= \dfrac{V}{R} \end{align*}\]

System Inputs

\[\begin{align*} \dot{x} = \dfrac{d}{dt} \begin{bmatrix} \langle \hat{i}(t)\rangle \\ \langle \hat{v}(t)\rangle \end{bmatrix} = \begin{matrix} \dfrac{1}{L} \\[1em] \dfrac{1}{C} \end{matrix} \begin{bmatrix} \langle{v_g}(t)\rangle d(t) - \langle i(t)\rangle R_{on} - \langle i(t)\rangle R_L - \langle v(t)\rangle \\[1em] \langle i(t)\rangle - \dfrac{\langle v(t)\rangle}{R} \end{bmatrix} \end{align*}\]

Linearized Small-Signal Model#

Derive a linearized small-signal model

\[\begin{align*} \dot{\hat{x}}(t) &\approx A \hat{x}(t) + B \hat{u}(t) \\[0.5em] \hat{y}(t) &= C \hat{x}(t) + E \hat{u}(t) \end{align*}\]

where

(9)#\[\begin{matrix} x(t) = \hat{x}(t) + X && X = \begin{bmatrix} I \\ V \end{bmatrix} \\[0.5em] u(t) = \hat{u}(t) + U && U = \begin{bmatrix} D \\ V_g \end{bmatrix} \\[0.5em] \end{matrix}\]

Find A, B, C, D

\[\begin{align*} A = \dfrac{d}{d\hat{x}(t)} f(x(t),u(t))\bigg|_{x=X,u=U} &= \begin{bmatrix} \ \ \dfrac{\partial f_1}{\partial x_1} & \dfrac{\partial f_1}{\partial x_2} \ \ \\[1em] \ \ \dfrac{\partial f_2}{\partial x_1} & \dfrac{\partial f_2}{\partial x_2} \ \ \end{bmatrix}\bigg|_{x,u} = \begin{bmatrix} \dfrac{\partial f_1}{\partial \langle \hat{i}(t)\rangle} & \dfrac{\partial f_1}{\partial \langle \hat{v}(t)\rangle} \\[1em] \dfrac{\partial f_2}{\partial \langle \hat{i}(t)\rangle} & \dfrac{\partial f_2}{\partial \langle \hat{v}(t)\rangle} \end{bmatrix}\bigg|_{x,u} \\[1em] A &= \begin{bmatrix} \dfrac{-(R_{on} + R_L)}{L} & \dfrac{-1}{L} \\[1em] \dfrac{1}{C} & \dfrac{-1}{RC} \end{bmatrix} \end{align*}\]
\[\begin{align*} B = \dfrac{d}{d\hat{u}(t)} f(x(t),u(t))\bigg|_{x=X,u=U} &= \begin{bmatrix} \dfrac{\partial f_1}{\partial u_1} & \dfrac{\partial f_1}{\partial u_2} \\[1em] \dfrac{\partial f_2}{\partial u_1} & \dfrac{\partial f_2}{\partial u_2} \end{bmatrix}\bigg|_{x,u} = \begin{bmatrix} \dfrac{\partial f_1}{\partial \hat{d'}(t)} & \dfrac{\partial f_1}{\partial \langle \hat{v_g}(t)\rangle} \\[1em] \dfrac{\partial f_2}{\partial \hat{d'}(t)} & \dfrac{\partial f_2}{\partial \langle \hat{v_g}(t)\rangle} \end{bmatrix}\bigg|_{x,u} \\[1em] B &= \begin{bmatrix} \dfrac{V_g}{L} & \dfrac{D}{L} \\[1em] 0 & 0 \end{bmatrix} \end{align*}\]

C =

(10)#\[\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\]

E =

(11)#\[\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\]

System Outputs in Frequency Domain#

\[\begin{align*} \dot{\hat{x}}(t) &= A \hat{x}(t) + B \hat{u}(t) \\[0.5em] \dot{\hat{y}}(t) &= C \hat{x}(t) + D \hat{u}(t) \\[0.5em] \text{Laplace Transform } &\\[0.5em] s\hat{x}(s) &= A \hat{x}(s) + B \hat{u}(s) \\[0.5em] sI\hat{x}(s) - A \hat{x}(s) &= B \hat{u}(s) \\[0.5em] \hat{x}(s) &= \left(sI-A\right)^{-1}B \hat{u}(s) \\[0.5em] \hat{y}(s) &= \bigg(C(sI-A)^{-1}B +E \bigg)\hat{u}(s) = G(s) \hat{u}(s) \end{align*}\]

Solver

G(s) =

(12)#\[\begin{bmatrix} G_{id}(s) & G_{ig}(s) \\[1em] G_{vd}(s) & G_{vg}(s) \end{bmatrix}\]
(13)#\[\begin{bmatrix} V_g \dfrac{RCs+1}{RLCs^2 + (R R_L C + L)s + R +R_L + R_{on}} & D \dfrac{RCs+1}{RRLCs^2 + (R R_L C + L)s + R +R_L + R_{on}} \\[1em] R V_g \dfrac{1}{RLCs^2 + (R R_L C + L)s + R +R_L + R_{on}} & R D \dfrac{1}{RLCs^2 + (R R_L C + L)s + R +R_L + R_{on}} \end{bmatrix}\]

Small signal output voltage to duty ratio transfer function

\[\begin{align*} G_{vd}(s) &= G_0 \dfrac{1-\dfrac{s}{w_z}}{1+\dfrac{s}{Qw_0}+ \left(\dfrac{s}{\omega_0} \right)^2} \\ G_{vd}(s) &= R V_g \dfrac{1}{RLCs^2 + (R R_L C + L)s + R +R_L + R_{on}} \\ \end{align*}\]

Small signal output current to duty ratio transfer function

\[\begin{align*} G_{id}(s) &= G_0 \dfrac{1-\dfrac{s}{w_z}}{1+\dfrac{s}{Qw_0}+ \left(\dfrac{s}{\omega_0} \right)^2} \\[1em] G_{id}(s) &= V_g \dfrac{RCs+1}{RLCs^2 + (R R_L C + L)s + R +R_L + R_{on}} \\[1em] \end{align*}\]